Junio 01-02, Opción A
Atrás Arriba Siguiente

 

  1. Escribe y comenta la Ley de Gravitación Universal.

  2. Recientemente. ha sido puesto en órbita. el satélite europeo. Envisat (environment satellite; satélite del medio ambiente). La altura de su orbita sobre la superficie de la Tierra es h = 800 km. Calcula la velocidad orbital del Envisat y el periodo de su órbita.

G = 6,67·10-11 N m2 kg-2; MT = 5,97·1024 kg; RT = 6,37·106 m.

 

SOLUCIÓN

  1. La Ley de Gravitación Universal que debemos a Newton, se puede enunciar del modo siguiente:

"La fuerza con la que interaccionan dos cuerpos es de tipo atractivo y central y es directamente proporcional al producto de las masas de los cuerpos (M y m) y varía inversamente con el cuadrado de la distancia ( R) que separa los centros de las masas."

La constante de proporcionalidad recibe el nombre de constante de gravitación universal (G).

La expresión matemática de esta ley es:

o bien, en forma vectorial:

ur: representa un vector unitario que tiene la dirección de la línea que une los centros de las masas. El signo negativo hace referencia al carácter atractivo de la fuerza.

De la formulación de la ley deben destacarse:

Ø R representa la distancia entre los centros de las masas M y m. Al variar R, la fuerza cambia inversamente proporcionalmente con el cuadrado de la distancia que las separa.

Ø Las masas M y m representan dos masas cualesquiera, por ejemplo, la masa de dos piedras, o la masa del Sol y la masa de la Tierra, etc. Su carácter es universal.

Ø La fuerza con la que M atrae a m es igual y de sentido contrario a la que ejerce m sobre M (según la tercera ley de Newton de la acción y reacción). Ambas no se anulan ya que actúan sobre cuerpos distintos. Esto significa que la fuerza con la que la Tierra atrae a una piedra es la misma en valor y de sentido contrario a la que la piedra atrae a la Tierra. Como la masa de la piedra es muy pequeña comparada con la de la Tierra, la aceleración que comunica a ésta es imperceptible.

 

  1. La única fuerza que actúa sobre el satélite de masa m (considerando una órbita circular) es la fuerza de atracción gravitatoria que ejerce la Tierra (masa M) que es perpendicular a la velocidad y, por lo tanto, comunica al satélite una aceleración centrípeta.

FG = m·ac

Siendo v la velocidad orbital.

Simplificando y despejando la velocidad orbital, se obtiene:

Sustituyendo los datos del enunciado y recordando que r = RT + h, se llega a :

v = 7452 m/s

Considerando órbita circular, el movimiento del satélite es circular y uniforme; por lo tanto, se puede calcular el periodo a partir de la velocidad orbital y de la longitud de la circunferencia que describe:

Despejando el periodo, se obtiene:

T = 6045 s = 1,7 horas

También se llega al mismo resultado partiendo de la 3ª ley de Kepler y despejando el periodo: